The graph of y > 1 2 x - 2 is shown. Which set contains only points that satisfy the inequality? A) {(6, 1), (-1, -3), (4, 4)} B) {(1, -1), (-3, -3), (2, 4)} C) {(1, -1), (-3, -3), (4, -2)} D) {(-1, -3), (-3, -3), (2, 4)}

Respuesta :

Answer:

Option B) {(1, -1), (-3, -3), (2, 4)}

Step-by-step explanation:

The correct inequality is

[tex]y>\frac{1}{2}x-2[/tex]

The solution of the inequality is the shaded area above the dashed line [tex]y=\frac{1}{2}x-2[/tex]

see the attached figure to better understand the problem

we know that

If a ordered pair satisfy the inequality, then the ordered pair must lie in the shaded area of the solution

Verify each case

case A) {(6, 1), (-1, -3), (4, 4)}

ordered pair (6,1)

For x=6, y=1

substitute in the inequality

[tex]1>\frac{1}{2}(6)-2[/tex]

[tex]1>1[/tex] ---> is not true

therefore

The point not satisfy the inequality

case B)  {(1, -1), (-3, -3), (2, 4)}

ordered pair (1,-1)

For x=1, y=-1

substitute in the inequality

[tex]-1>\frac{1}{2}(1)-2[/tex]

[tex]-1>-1.5[/tex] ---> is true

so

The point satisfy the inequality

ordered pair (-3,3)

For x=-3, y=3

substitute in the inequality

[tex]3>\frac{1}{2}(-3)-2[/tex]

[tex]3>-3.5[/tex] ---> is true

so

The point satisfy the inequality

ordered pair (2,4)

For x=2, y=4

substitute in the inequality

[tex]4>\frac{1}{2}(2)-2[/tex]

[tex]4>-1[/tex] ---> is true

so

The point satisfy the inequality

therefore

The set contains only points that satisfy the inequality

case C) {(1, -1), (-3, -3), (4, -2)}

ordered pair (4,-2)

For x=4, y=-2

substitute in the inequality

[tex]-2>\frac{1}{2}(4)-2[/tex]

[tex]-2>0[/tex] ---> is not true

therefore

The point not satisfy the inequality

case D) {(-1, -3), (-3, -3), (2, 4)}

ordered pair (-1,-3)

For x=-1, y=-3

substitute in the inequality

[tex]-3>\frac{1}{2}(-1)-2[/tex]

[tex]-3>-2.5[/tex] ---> is not true

therefore

The point not satisfy the inequality

Ver imagen calculista