Respuesta :
Answer:
(3) Jonah's graph has a steeper slope than Rowan's
Step-by-step explanation:
First we are going to write the equations for the amount of money that each one save
y = a+bx
Where y: Amount of money in the jar
a: Initial saving
b: Money saved every week ( graph's slope )
x: Number of week
Then, for Rowan
y = 50 + 5x
and for Jonah
y = 10 + 15x
Initially Rowan's graph lies above Jonah's graph but this situation change with time.
It is always true that Jonah's graph has a steeper slope than Rowan's, because for Rowan's graph the slope is 5 and for Jonah's graph the slope is 15
Then the answer is:
(3) Jonah's graph has a steeper slope than Rowan's
3) Jonah's curve has a steeper slope than Rowan's is True, All others are false
- Rowan savings already (Intercept of Curve) = $ 50 ; Rowan Additional savings per week Slope with time) = $ 5
Rowan Savings Equation = 50 + 5t , where t is weekly time
- Jonah savings already (Intercept of Curve) = $ 10 ; Jonah Additional savings per week (Slope with time) = $ 15
Rowan Savings = 10 + 15t , where t is weekly time
- Jonah's curve has higher (steeper) slope, denoting more change in dependent variable 'savings' with change in independent variable weekly time.
- t weeks Rowan savings Jonah savings
1 50 + 5 (1) = 55 10 + 15 (1) = 25
2 50 + 5 (2) = 60 10 + 15 (2) = 40
3 50 + 5 (3) = 65 10 + 15 (3) = 55
4 50 + 5 (4) = 70 10 + 15 (4) = 70
5 50 + 5 (5) = 75 10 + 15 (5) = 85
At t weeks < 3 , Rowan savings > Jonah savings. At t weeks > 4, Jonah savings > Rowan savings. At t = 4 units, their savings are equal. So, none savings curve is above the other 'always'.
To learn more, refer https://brainly.com/question/18672496?referrer=searchResults