Respuesta :

Answer:

The simplified given expression [tex]\frac{3x^2y^{-1}}{2x}.\frac{10x^2y}{3y^{-3}}[/tex] is [tex]5x^3y^3[/tex]

Step-by-step explanation:

Given expression is

[tex]\frac{3x^2y^{-1}}{2x}.\frac{10x^2y}{3y^{-3}}[/tex]

To find the simplified expression:

[tex]\frac{3x^2y^{-1}}{2x}.\frac{10x^2y}{3y^{-3}}=\frac{3x^2.x^-1}{2y^1}.\frac{10x^2y.y^3}{3}[/tex]   ( Using the properties [tex]\frac{a^m}{a^n}=a^{m-n}[/tex] and   [tex]a^m.a^n=a^{m+n}[/tex] )

[tex]=\frac{3x^{2-1}}{2y}.\frac{10x^2y^{1+3}}{3}[/tex]

[tex]=\frac{3x}{2y}.\frac{10x^2y^4}{3}[/tex] (using division property to the terms)

[tex]=5x^{1+2}y^{4-1}[/tex]  ( Using the properties [tex]\frac{a^m}{a^n}=a^{m-n}[/tex] and  [tex]a^m.a^n=a^{m+n}[/tex] )

[tex]=5x^3y^3[/tex]

Therefore [tex]\frac{3x^2y^{-1}}{2x}.\frac{10x^2y}{3y^{-3}}=5x^3y^3[/tex]

Therefore the simplified given expression is [tex]5x^3y^3[/tex]

Therefore simplified expression is given by [tex]\frac{3x^2y^{-1}}{2x}.\frac{10x^2y}{3y^{-3}}=5x^3y^3[/tex]