oreo85
contestada

The points (–4, –3) and (–1, –8) are on a line. Find the intercepts to the nearest tenth.

A) x = –5; y = –11
B) x = –5.8; y = –9.7
C) x = 3; y = –5
D) x = 5.8; y = –9.7

Respuesta :

Answer:

B) intercepts are [tex]x=-5.8\ and\ y =-9.7[/tex]

Step-by-step explanation:

Given coordinates are [tex](-4,-3)\ and\ (-1,-8)[/tex]

The intercepts are the points where the line meets with the x-axis and the y-axis.

The Y-intercept is where x-coordinate is zero.

And X-intercept is where y-coordinate is zero.

We will use the slope intercept form of equation of line to compute Y-intercept.

[tex]y=mx+b[/tex]

Where [tex]m[/tex] is slope of line. And [tex]b[/tex] is Y-intercept.

We will find slope of line and plug in this equation to compute Y-intercept.

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]x_1=-4,y_1=-3\ and\ x_2=-1,y_2=-8\\\\m=\frac{-8-(-3)}{-1-(-4)}\\m=\frac{-5}{3}[/tex]

[tex]Plug\ x=-4,y=-3\ in\ y=mx+b\\\\-3=\frac{-5}{3}\times-4+b\\\\-3=\frac{20}{3}+b\\\\-3=6.67+b\\-3-6.67=b\\\\b=-9.7[/tex]

[tex]y=\frac{-5}{3}x-9.7[/tex]

Now, plug [tex]y=0[/tex] in the equation [tex]y=mx+b[/tex] to find X-intercept.

[tex]0=\frac{-5}{3}x-9.7\\ \\9.7=\frac{-5}{3}x\\\\9.7\times3=-5x\\\\x=-9.7\frac{3}{5}\\ \\x=-5.8[/tex]

So, our intercepts are [tex]x=-5.8\ and\ y =-9.7[/tex]