Respuesta :

Answer:

1) The option [tex]c=9-a+b[/tex] is correct.

2) The option x=-2 or x=-3 is correct.

3)  The option [tex]c=9-a+b[/tex] is correct.

4) The option [tex]x=\frac{11}{3}[/tex] is correct.

5)  The option x=-2 or x=-3 is correct.

Step-by-step explanation:

1) Given equation is [tex]\sqrt{a-b+c}=3[/tex]

Now to solve the equation for c:

[tex]\sqrt{a-b+c}=3[/tex]

Squaring on both sides we get

[tex](\sqrt{a-b+c})^2=3^2[/tex]

[tex]a-b+c=9[/tex]

[tex]c=9-a+b[/tex]

Therefore the option [tex]c=9-a+b[/tex] is correct.

2) Given equation is [tex]\sqrt{3x+10}=x+4[/tex]

Now to solve the equation for x:

[tex]\sqrt{3x+10}=x+4[/tex]

Squaring on both sides we get

[tex](\sqrt{3x+10})^2=(x+4)^2[/tex]

[tex]3x+10=x^2+8x+16[/tex]

[tex]x^2+8x+16-3x-10=0[/tex]

[tex]x^2+5x+6=0[/tex] which is a quadratic equation in x.

We can solve it by finding factors

[tex]x^2+5x+6=(x+2)(x+3)[/tex]

[tex](x+2)(x+3)=0[/tex]

x+2=0 or x+3=0

Therefore  x=-2 or x=-3

Therefore the option x=-2 or x=-3 is correct.

3)  Given equation is [tex]\sqrt{a-b+c}=3[/tex]

Now to solve the equation for c:

[tex]\sqrt{a-b+c}=3[/tex]

Squaring on both sides we get

[tex](\sqrt{a-b+c})^2=3^2[/tex]

[tex]a-b+c=9[/tex]

[tex]c=9-a+b[/tex]

Therefore the option [tex]c=9-a+b[/tex] is correct.

4) Given equation is [tex]\sqrt{x+3}=2\sqrt{x-2}[/tex]

Now to solve the equation for x:

[tex]\sqrt{x+3}=2\sqrt{x-2}[/tex]

Squaring on both sides we get

[tex](\sqrt{x+3})^2=(2\sqrt{x-2})^2[/tex]

[tex]x+3=2^2(x-2)[/tex]

[tex]x+3=4(x-2)[/tex]

[tex]x+3=4x-8[/tex]

[tex]4x-8-x-3=0[/tex]

[tex]3x-11=0[/tex]

[tex]x=\frac{11}{3}[/tex]

Therefore the option [tex]x=\frac{11}{3}[/tex] is correct.

5) Given equation is [tex]\sqrt{3x+10}=x+4[/tex]

Now to solve the equation for x:

[tex]\sqrt{3x+10}=x+4[/tex]

Squaring on both sides we get

[tex](\sqrt{3x+10})^2=(x+4)^2[/tex]

[tex]3x+10=x^2+8x+16[/tex]

[tex]x^2+8x+16-3x-10=0[/tex]

[tex]x^2+5x+6=0[/tex] which is a quadratic equation in x.

We can solve it by finding factors

[tex]x^2+5x+6=(x+2)(x+3)[/tex]

[tex](x+2)(x+3)=0[/tex]

x+2=0 or x+3=0

Therefore  x=-2 or x=-3

Therefore the option x=-2 or x=-3 is correct.

Answer:

1) c = 9 - a + b

2) x=-2 or x=3

3) c = 9 - a + b

4) X= 11/3

5) x=-2 or x=3