Respuesta :

Answer:

True Statement are

[tex]\sin E =\dfrac{11}{\sqrt{185}}[/tex]

[tex]\sin D =\dfrac{8}{\sqrt{185}}[/tex]

Step-by-step explanation:

Given:

DF = 11

EF = 8

[tex]DE = \sqrt{185}=Hypotenuse[/tex]

In Right Angle Triangle DEF, the Sine Identity is

[tex]\sin D = \dfrac{\textrm{side opposite to angle D}}{Hypotenuse}\\[/tex]

Substituting the values we get

[tex]\sin D = \dfrac{EF}{DE}=\dfrac{8}{\sqrt{185}}[/tex]

[tex]\sin D =\dfrac{8}{\sqrt{185}}[/tex] ....True

And also,

[tex]\sin E = \dfrac{\textrm{side opposite to angle E}}{Hypotenuse}\\[/tex]

Substituting the values we get

[tex]\sin E = \dfrac{DF}{DE}=\dfrac{11}{\sqrt{185}}[/tex]

[tex]\sin E =\dfrac{11}{\sqrt{185}}[/tex] ....True

Answer:

A and C

Step-by-step explanation:

Just did it on  edge