Respuesta :

Answer:

The value of x for the given expression is [tex]\dfrac{- 7}{3}[/tex]

Step-by-step explanation:

Given as :

The expression is

[tex](32)^{3 x + 5}[/tex] = [tex](8)^{ x - 1}[/tex]

Now,

∵ [tex](2)^{5}[/tex] = 32

And  [tex](2)^{3}[/tex] = 8

So, [tex](2^{5})^{3 x + 5}[/tex] = [tex](2^{3})^{x - 1}[/tex]

Or, [tex]2^{15 x + 25}[/tex] =  [tex]2^{3 x - 3}[/tex]

Here , on both side base is 2 , so we remove common base 2

∴ Equation can be written as

15 x + 25 = 3 x - 3

Or, 15 x - 3 x = - 25 - 3

Or, 12 x = - 28

∴  x = [tex]\dfrac{- 7}{3}[/tex]

So, The value of x = [tex]\dfrac{- 7}{3}[/tex]

Hence, The value of x for the given expression is [tex]\dfrac{- 7}{3}[/tex] Answer