Answer:
[tex]s=1.1107\ m[/tex] is the minimum depth of snow for survivable stopping.
Explanation:
Given:
Firstly, we calculate the deceleration caused in the snow:
[tex]a=\frac{F}{m}[/tex]
[tex]a=\frac{120000}{85}[/tex]
[tex]a=1411.765\ m.s^{-2}[/tex]
Now, using equation of motion:
[tex]v^2=u^2+2a.s[/tex] ....................(1)
where:
v = final velocity of the body after stopping
u = initial velocity of the body just before hitting the snow
a = acceleration of the body in the snow
s = distance through in the snow
Putting respective values in eq. (1)
[tex]0^2=56^2+2\times (-1411.765)\times s[/tex]
[tex]s=1.1107\ m[/tex]