Answer:
a) 0.1936
b) 0.137
c) 0.097
d) 0.087
Step-by-step explanation:
Margin of error is given as:
E = [tex]2\sqrt{\frac{p(1-p)}{n}}[/tex]
here,
p is the probability of event
n is the sample size
a. Sample of size 20, 5 red chips
n = 20
p = 5 ÷ 20
= 0.25
Thus,
E = [tex]2\sqrt{\frac{0.25(1-0.25)}{20}}[/tex]
or
E = 0.1936
b. Sample of size 40, 10 red chips
n = 40
p = 10 ÷ 40
= 0.25
Thus,
E = [tex]2\sqrt{\frac{0.25(1-0.25)}{40}}[/tex]
or
E = 0.137
c. Sample of size 80, 20 red chips
n = 80
p = 20 ÷ 80
= 0.25
Thus,
E = [tex]2\sqrt{\frac{0.25(1-0.25)}{80}}[/tex]
or
E = 0.097
d. Sample of size 100, 25 red chips
n = 100
p = 25 ÷ 100
= 0.25
Thus,
E = [tex]2\sqrt{\frac{0.25(1-0.25)}{100}}[/tex]
or
E = 0.087