Answer with Step-by-step explanation:
We are given that
O(0,0),P(3,-1) and Q(2,3) on the coordinate plane.
Mark point O(0,0), P(3,-1) and Q(2,3) on the graph and then join OP,PQ and OQ.
b.We have to find OP and OQ are perpendicular or not.
Slope-formula:[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
By using the formula
Slope of OP=[tex]\frac{-1-0}{3-0}=-\frac{1}{3}[/tex]
Slope of OQ=[tex]\frac{3-0}{2-0}=\frac{3}{2}[/tex]
When two lines are perpendicular then
Slope of one line=[tex]-\frac{1}{slope\;of\;other\;line}[/tex]
Slope of line OP[tex]\neq -\frac{1}{slope\;of\;line\;OQ}[/tex]
Hence, line OP and OQ are not perpendicular.