Respuesta :

Answer:

[tex]c=1[/tex] and [tex]c=-12[/tex]

Step-by-step explanation:

The correct equation is:

[tex]c^2+11c=12[/tex]

To solve by completing the square method.

Solution:

We have:

[tex]c^2+11c=12[/tex]

In order to solve by completing the square method we will carry out the following operations to the given equation to get a perfect square binomial.

We can write as:

[tex]c^2+2.\frac{11}{2}c=12[/tex]  

[tex]c^2+2.\frac{11}{2}c+(\frac{11}{2})^2-(\frac{11}{2})^2=12[/tex]

[tex](c+\frac{11}{2})^2-(\frac{11}{2})^2=12[/tex]  [As  [tex]c^2+2.\frac{11}{2}c+(\frac{11}{2})^2=(c+\frac{11}{2})^2[/tex]]

Adding both sides by [tex](\frac{11}{2})^2[/tex]

[tex](c+\frac{11}{2})^2-(\frac{11}{2})^2+(\frac{11}{2})^2=12+(\frac{11}{2})^2[/tex]

[tex](c+\frac{11}{2})^2=12+\frac{121}{4}[/tex]  

Taking LCD to add fraction.

[tex](c+\frac{11}{2})^2=\frac{48}{4}+\frac{121}{4}[/tex]

[tex](c+\frac{11}{2})^2=\frac{169}{4}[/tex]

Taking square root both sides.

[tex]\sqrt{(c+\frac{11}{2})^2}=\sqrt{\frac{169}{4}}[/tex]

[tex]c+\frac{11}{2}=\pm\frac{13}{2}[/tex]

Subtracting both sides by [tex]\frac{11}{2}[/tex] :

[tex]c+\frac{11}{2}-\frac{11}{2}=\pm\frac{13}{2}-\frac{11}{2}[/tex]

[tex]c=\pm\frac{13}{2}-\frac{11}{2}[/tex]

So, we have:

[tex]c=\frac{13}{2}-\frac{11}{2}[/tex] and [tex]c=-\frac{13}{2}-\frac{11}{2}[/tex]

[tex]c=\frac{2}{2}[/tex] and [tex]c=\frac{-24}{2}[/tex]

[tex]c=1[/tex] and [tex]c=-12[/tex]  (Answer)