A 100-N uniform ladder, 8.0 m long, rests against a smooth vertical wall. The coefficient of static friction between ladder and floor is 0.40. What minimum angle can the ladder make with the floor before it slips?

Respuesta :

Answer:

The minimum angle is 51.34°

Explanation:

Given that,

Weight of ladder = 100 N

Length = 8.0 m

Coefficient of static friction = 0.40

We need to calculate the normal force

Using Newtons law in vertical direction

[tex]F_{y}=n-mg[/tex]

[tex]N-mg=0[/tex]

[tex]N=mg[/tex]

We need to calculate the normal force

Using Newtons law in horizontal direction

[tex]F_{s}=f_{s}-P[/tex]

[tex]f_{s}-P=0[/tex]

[tex]f_{s}=P[/tex]

[tex]P=\mu mg[/tex]

We need to calculate the minimum angle

Using torque about the point A then

[tex]-mg\cos\theta\times AB+P\sin\theta\times AC=0[/tex]

Put the value into the formula

[tex]mg\cos\theta\times(\dfrac{L}{2})=\mu mg\sin\theta\times L[/tex]

[tex]\cos\theta\times\dfrac{1}{2}=\mu\sin\theta[/tex]

[tex]\dfrac{1}{2}=\mu\times\tan\theta[/tex]

[tex]\theta=\tan^{-1}(\dfrac{1}{2\times0.40})[/tex]

[tex]\theta=51.34^{\circ}[/tex]

Hence, The minimum angle is 51.34°

Ver imagen CarliReifsteck

The minimum angle that the  ladder make with the floor before it slips is 51.34 Degree.

Given data:

The weight of ladder is, W = 100 N.

The length of ladder is, L = 8.0 m.

The coefficient of static friction between ladder and floor is, [tex]\mu =0.40[/tex].

Apply the Newton' law in vertical direction to obtain the value of Normal Force (P) as,

[tex]N = mg[/tex]

And force along the horizontal direction is,

[tex]F= \mu \times N\\\\F = \mu \times mg[/tex]

Now, taking the torque along the either end of ladder as,

[tex]-mgcos \theta \times \dfrac{L}{2}+Fsin \theta \times L =0\\\\mgcos \theta \times \dfrac{L}{2} = Fsin \theta \times L[/tex]

Solving as,

[tex]mgcos \theta \times \dfrac{L}{2} = (\mu mg) \times sin \theta \times L\\\\cos \theta \times \dfrac{1}{2} = (\mu) \times sin \theta\\\\tan \theta = \dfrac{1}{2 \times 0.40 }\\\\\theta = tan^{-1}(1/0.80)\\\\\theta = 51.34^{\circ}[/tex]

Thus, we can conclude that the minimum angle that the  ladder make with the floor before it slips is 51.34 Degree.

Learn more about the frictional force here:

https://brainly.com/question/4230804