When simplified, the expression (x Superscript one-eighth Baseline) (x Superscript three-eighths Basleline) is 12. Which is a possible value of x?

6
24
144
256

Respuesta :

The required 'option C) 144' is correct.

Step-by-step explanation:

We have,

[tex](x^{\dfrac{1}{8}})(x^{\dfrac{3}{8}})=12[/tex]

To find, the possible value of x = ?

∴ [tex](x^{\dfrac{1}{8}})(x^{\dfrac{3}{8}})=12[/tex]

⇒ [tex]x^{\dfrac{1}{8}+\dfrac{3}{8}}=12[/tex]

Using the exponential identity,

[tex]a^{m} a^{n} =a^{m+n}[/tex]

⇒ [tex]x^{\dfrac{1+3}{8}}=12[/tex]

⇒ [tex]x^{\dfrac{4}{8}}=12[/tex]

⇒ [tex]x^{\dfrac{1}{2}}=12[/tex]

Squaring both sides, we get

[tex](x^{\dfrac{1}{2}})^2=(12)^2[/tex]

⇒ [tex]x^{{\dfrac{1}{2}}\times2}=144[/tex]

⇒ x = 144

The possible value of x = 144

Thus, the required 'option C) 144' is correct.

Answer:

144

Step-by-step explanation: