Answer: force from sun to mars = [tex]1.62*10^{19} N[/tex], force from mars to sun = [tex]-1.62*10^{19} N[/tex]
Explanation: The force of attraction or repulsion between 2 object ( in this case the sun and mars ) in space is given by newton's law of gravitation which is given mathematically below as
[tex]F =\frac{Gm_{s} m_{m} }{r^{2} }[/tex]
where [tex]G = 6.67 * 10^{-11} , m_{s} = 2*10^{30}kg m_{m} = 6.4 *10^{23} kg\\r = 2.3 *10^{11} m[/tex]
G = gravitational constant, [tex]m_{m}[/tex]= mass of mars, [tex]m_{s}[/tex] = mass of sun
[tex]F = \frac{6.64 * 10 ^{-11}* 2 * 10^{30} *6.4*10^{23}} {2.3*10^{11} * 2.3* 10^{11} } =\frac{85.376 *10^{42} }{5.25 *10^{22} } \\\\F = 1.62 * 10 ^{19} N\\[/tex]
the mars also exerts the same magnitude of force above on the sun but in the opposite direction, thus the force mars exerts on the sun is [tex]-1.62*10^{19} N[/tex]