contestada


A series RL circuit with L = 3.00 H and a series RC circuit with C = 3.00 F have equal time constants. If the two circuits contain the same resistances R, (a) what is the value of R and (b) what sit the time constant?

Respuesta :

Answer:

(a) R = 1Ω

(b) τ = 3

Explanation:

The time constants of the given circuits are as follows

[tex]\tau_{RL} = \frac{L}{R}\\\tau_{RC} = RC[/tex]

If the two circuits have equal time constants, then

[tex]\frac{L}{R} = RC\\R^2 = \frac{L}{C} = \frac{3}{3} = 1\\R = 1\Omega[/tex]

Therefore, the time constant in any of the circuits is

[tex]\tau = RC = 3[/tex]

(a). Value of resistance R is  1 ohm.

(b). The Value of time constant will be 3 second.

The time constant is defined as, time taken by the system to reach at 63.2% of its final value.

Time constant in RL circuit is,  [tex]=\frac{L}{R}[/tex]

Time constant in RC circuit is, [tex]=RC[/tex]

Since, in question given that both circuit have same time constant.

So,    [tex]RC=\frac{L}{R}\\\\R^{2}=\frac{L}{C}\\\\R=\sqrt{\frac{L}{C} }[/tex]

substituting L = 3H and C = 3F in above expression.

         [tex]R=\sqrt{\frac{3}{3} }=1ohm[/tex]

Time constant = [tex]RC=1*3=3s[/tex]

Learn more:

https://brainly.com/question/15969276