Respuesta :
Answer:
A= {M1,M2},{M2,M3}, {M2,M3}
A U B = S
A n B = 0
A n B'= A
Step-by-step explanation:
A= ( Two males) = { (M1,M2), (M2,M3), (M2,M3)
B= (Atleast one female) = {M1,W1}, {M,W1}, {M3,W1}, {M1,W2} , {M2,W2}, {M3,W2}
Following are the solution to the required function:
Set function:
Given that there are five applicants with three men and two women.
Let S be the subset of the set of all possible outcomes,
[tex]\{M_1, M_2\}, \{M_2, M_3\},\{M_3,M_1\},\{W_1,M_1\},\{W_2,M_1\},\{W_1, M_2\},\\\{W_2,M_2\},\{W_1, M_3\},\{W_2, M_2\}, \{W_1,W_2\}[/tex]
Let A denote the subset of outcomes corresponding to the selection of two men.
The possible outcomes of A are,
[tex]\{M_1,M_2\}, \{M_2,M_3\},\{M_3,M_1\}[/tex]
Let B be the subset corresponding to the selection of at least one woman.
[tex]\{W_1,M_1\},\{W_2,M_1\},\{W_1, M_2\},\\\{W_2,M_2\},\{W_1, M_3\},\{W_2, M_2\}, \{W_1,W_2\}[/tex]
Then [tex]\bar{B} =[/tex]
[tex]\{M_1,M_2\}, \{M_2,M_3\},\{M_3,M_1\}[/tex]
Find [tex]A\cup B\\\\[/tex]
[tex]=\{\{M_1,M_2\}, \{M_2,M_3\},\{M_3,M_1\}\} \cup \{ \{W_1,M_1\},\{W_2,M_1\},\{W_1, M_2\},\\\{W_2,M_2\},\{W_1, M_3\},\{W_2, M_2\}, \{W_1,W_2\}\}\\\\=\{\{M_1,M_2\}, \{M_2,M_3\},\{M_3,M_1\}, \{W_1,M_1\},\{W_2,M_1\},\{W_1, M_2\},\\\{W_2,M_2\},\{W_1, M_3\},\{W_2, M_2\}, \{W_1,W_2\}\}\\\\[/tex]
Find [tex]A\cap B\\\\[/tex]
[tex]=\{\{M_1,M_2\}, \{M_2,M_3\},\{M_3,M_1\}\} \cap \{ \{W_1,M_1\},\{W_2,M_1\}, \{W_1, M_2\}, \\ \{W_2,M_2\},\{W_1, M_3\},\{W_2, M_2\}, \{W_1,W_2\}\}\\\\ =\{\phi\}[/tex]
Find [tex]A\cap \bar{B}\\\\[/tex]
[tex]=\{\{M_1,M_2\}, \{M_2,M_3\},\{M_3,M_1\}\cap\{\{M_1,M_2\}, \{M_2,M_3\},\{M_3,M_1\}\\\\=\{\{M_1,M_2\}, \{M_2,M_3\},\{M_3,M_1\}\\\\[/tex]
Learn more about the set function here:
brainly.com/question/25009504