Respuesta :

Answer:

(x=6,y=5,z=9)

Step-by-step explanation:

The given system is

x+y+z=20 ------>(1)

13x+0y+6z=132 ------->(2)

150x+90y+139z=2601------>(3)

Make y the subject in the first equation to get: [tex]y=20-x-z-------(4)[/tex]

Put equation (4) in equation (3) to get:

150x+90(20-x-z)+139z=2601

150x+180-90x-90z+139z=2601

60x+49z=801---->(5)

We solve equation (2) and (5) simultaneously

13x+6z=132 ------->(2)

60x+49z=801---->(5)

Make x the subject in equation (2) to get:

[tex]x=\frac{132-6z}{13}[/tex]

Put it in (5)

[tex]60(\frac{132-6z}{13})z+49z=2601[/tex]

[tex]\frac{277z+7920}{13}=801[/tex]

[tex]277z+7920=10413[/tex]

[tex]277z=2493[/tex]

[tex]z=9[/tex]

[tex]x=\frac{132-6*9}{13}=6[/tex]

From 6+y+9=20

y=20-15=5