If the car passes point A with a speed of 20 m/s and begins to increase its speed at a constant rate of at = 0.5 m/s2 , determine the magnitude of the car’s acceleration when s = 101.68 m and x = 0.

Respuesta :

Answer:

[tex]1.68 \frac{m}{s^2}[/tex]

Explanation:

Please find the image for the question as attached file.

Solution -

Given -

First of all we will calculate the velocity at point C,

As per newton's third law of motion-

[tex]V_C^2 = V_A^2 + 2 a_t (S_C - S_A)\\[/tex]

Substituting the given values in above equation, we get -

[tex]V_C^2 = 20^2 + 2*0.5*(100-0)\\V_C = 22.361 \frac{m}{s}[/tex]

Now we will determine the radius of curvature for the curve shown in the attached image

[tex]Y = 16 - \frac{1}{625} X^2\\[/tex]

Differentiating on both the sides, we get -

[tex]\frac{dy}{dx} = -3.2 (10^-3) X\\\frac{d^2y}{d^2x} = -3.2 (10^-3)\\Curve = \frac{[1+(\frac{dy}{dx})^2]^{\frac{3}{2}} }{\frac{d^2y}{d^2x}} \\Curve = 312.5[/tex]meter

Acceleration on curved path

[tex]a = \frac{V_C^2}{Curve} \\a = \frac{22.361^2}{312.5} \\a= 1.60 \frac{m}{s^2}[/tex]

Final acceleration

[tex]a_f = \sqrt{0.5^2 + 1.6^2} \\a_f = 1.68\frac{m}{s^2}[/tex]

Ver imagen Arclight