Respuesta :

Step-by-step explanation:

ABCD is a rectangle and BD is diagonal such that:

[tex]\angle DBC = 30\degree

(given) \\\\

\angle BCD = 90\degree

(\angle\:of\:a\:rectangle) \\\\

\therefore \angle CDB= 60\degree

(remaining\:\angle\:of \:\triangle)

\\\\

\therefore \triangle BCD\:is \:a\:30\degree , \: 60\degree \:\&\:90\degree \:\triangle. \\\\

\therefore CD = \frac{1}{2} \times BD (side\:oppossite \:to \:30\degree)\\\\

\therefore CD = \frac{1}{2} \times 4\\\\

\therefore CD =2\: units\\\\

\&\\\\

BC = \frac{\sqrt 3}{2} \times BD(side\:oppossite \:to \:60\degree)\\\\

\therefore BC = \frac{\sqrt 3}{2} \times 4\\\\

\therefore BC =2{\sqrt 3}\: units\\\\

Now\\\\

A(\triangle BCD) = \frac{1}{2} \times BC\times CD\\\\

\therefore A(\triangle BCD) = \frac {1}{2} \times {2\sqrt 3} \times 2\\\\

\red{\boxed {\therefore A(\triangle BCD) ={2\sqrt 3}\: units^2}} [/tex]