Respuesta :

Option B:

[tex]\overline{A B}=\overline{D E}[/tex]

Solution:

In the given figure [tex]\triangle A B C \cong \triangle D E C[/tex].

If two triangles are similar, then their corresponding sides and angles are equal.

By CPCTC, in [tex]\triangle A B C \ \text{and}\ \triangle D E C[/tex],

[tex]\overline{AB }=\overline{DE}[/tex] – – – – (1)

[tex]\overline{B C}=\overline{EC}[/tex] – – – – (2)

[tex]\overline{ CA}=\overline{CD}[/tex] – – – – (3)

[tex]\angle ACB=\angle DCE[/tex]  – – – – (4)

[tex]\angle ABC=\angle DEC[/tex]  – – – – (5)

[tex]\angle BAC=\angle EDC[/tex]  – – – – (6)

Option A: [tex]\overline{B C}=\overline{D C}[/tex]

By CPCTC proved in equation (2) [tex]\overline{B C}=\overline{EC}[/tex].

Therefore [tex]\overline{B C}\neq \overline{D C}[/tex]. Option A is false.

Option B: [tex]\overline{A B}=\overline{D E}[/tex]

By CPCTC proved in equation (1) [tex]\overline{AB }=\overline{DE}[/tex].

Therefore Option B is true.

Option C: [tex]\angle A C B=\angle D E C[/tex]

By CPCTC proved in equation (4) [tex]\angle ACB=\angle DCE[/tex].

Therefore [tex]\angle A C B\neq \angle D E C[/tex]. Option C is false.

Option D: [tex]\angle A B C=\angle E D C[/tex]

By CPCTC proved in equation (5) [tex]\angle ABC=\angle DEC[/tex].

Therefore [tex]\angle A B C\neq \angle E D C[/tex]. Option D is false.

Hence Option B is the correct answer.

[tex]\Rightarrow\overline{A B}=\overline{D E}[/tex]