Respuesta :

Answer:

KI=11.25 and HI=6.75

Step-by-step explanation:

Consider the below figure attached with this question.

According to Pythagoras Theorem:

[tex]base^2+perpendicular^2=hypotenuse^2[/tex]

Use Pythagoras in triangle HKL

[tex]LH^2+KH^2=LK^2[/tex]

[tex](LH)^2+9^2=15^2[/tex]

[tex](LH)^2+81=225[/tex]

[tex](LH)^2=144[/tex]

Taking square root on both sides.

[tex]LH=12[/tex]

Let length of HI be x.

LI = 12+x

Use Pythagoras theorem in ΔKLI,

[tex](KI)^2+15^2=(12+x)^2[/tex]

[tex](KI)^2+225=x^2+24x+144[/tex]

[tex](KI)^2=x^2+24x+144-225[/tex]

[tex](KI)^2=x^2+24x-81...(1)[/tex]

Use Pythagoras theorem in ΔHKI,

[tex](KI)^2=x^2+9^2[/tex]

[tex](KI)^2=x^2+81...(2)[/tex]

From (1) and (2) we get

[tex]x^2+81=x^2+24x-81[/tex]

[tex]24x=162[/tex]

[tex]x=\dfrac{162}{24}=6.75[/tex]

Hence, the measure of HI is 6.75 units.

Substitute x=6.75 in equation (2).

[tex](KI)^2=(6.75)^2+81[/tex]

[tex](KI)^2=126.5625[/tex]

Taking square root on both sides.

[tex]KI=\sqrt{126.5625}[/tex]

[tex]KI=11.25[/tex]

Hence, the measure of KI is 11.25 units.

Ver imagen erinna