Respuesta :

For  question 4, [tex]sinA =\frac{a}{c}, cosA= \frac{b}{c}, tan B = \frac{b}{a}, sin J = \frac{j}{l}, cosK = \frac{j}{l}, tanK = \frac{k}{j}.[/tex]

Question 5. Option a and question 6. Option j

Step-by-step explanation:

Step 1:

The three basic formula needed to solve these questions are:

[tex]sin\theta = \frac{oppositeside}{hypotenuse} , cos\theta = \frac{adjacentside}{hypotenuse}, tan\theta= \frac{opposite side}{adjacent side}.[/tex]

Step 2:

Using the above formula, we solve the following values

[tex]sinA = \frac{oppositeside}{hypotenuse}[/tex]  [tex]=\frac{a}{c}.[/tex]

[tex]cosA = \frac{adjacentside}{hypotenuse}[/tex] [tex]= \frac{b}{c}.[/tex]

[tex]tanB= \frac{opposite side}{adjacent side}[/tex][tex]= \frac{b}{a}.[/tex]

[tex]sinJ = \frac{oppositeside}{hypotenuse}[/tex] [tex]= \frac{j}{l}.[/tex]

[tex]cosK = \frac{adjacentside}{hypotenuse}[/tex][tex]= \frac{j}{l}.[/tex]

[tex]tanK= \frac{opposite side}{adjacent side}[/tex][tex]= \frac{k}{j}.[/tex]

Step 3:

For question 5, The triangle's angle = 23°, opposite side = BC inches and hypotenuse = 4 inches.

[tex]sin\theta= \frac{opposite side}{hypotenuse}. sin 23^{\circ}= \frac{BC}{4}, sin23^{\circ} = 0.3907,BC = (0.3907)(4) = 1.5628.[/tex]

SO BC is 1.5628 inches, rounding this off to the nearest tenth, we get BC = 1.6 inches which is option a.

Step 4:

For question 6, The triangle's angle = 50°, opposite side = QR m the adjacent side = 8.1 m.

[tex]tan\theta= \frac{opposite side}{adjacentside}. tan 50^{\circ}=\frac{QR}{8.1}, tan50^{\circ} = 1.1917,QR = (1.1917)(8.1) = 9.65277[/tex]

SO QR is 9.65277 meters, rounding this off to the nearest tenth, we get QR = 9.7 inches which is option j.