Respuesta :

Answer:

[tex]\frac{1}{9\pi} cm/s \ or \ 0.0354cm/s[/tex]

Step-by-step explanation:

question tests our knowledge of differentiation:

[tex]\frac{dV}{dt} =100\frac{cm^3}{s}\\d=2r=30\\=>r=15[/tex]

Find [tex]\frac{dr}{dt}[/tex]

Given the formula for a sphere's volume is

[tex]V=\frac{4}{3}\pi r^3[/tex]

Take derivatives on both sides:

[tex]\frac{d}{dt}(V)=\frac{d}{dt}(\frac{4}{3}\pr r^3)}\\\frac{dV}{dt}=\frac{4}{3}\pi (3r^2)\frac{dr}{dt}=4\pi r^2 \frac{dr}{dt}[/tex]

Hence;

[tex]=\frac{dr}{dt}=\frac{1}{4\pi r^2}.\frac{dV}{dt}\\=\frac{dr}{dt}=\frac{1}{4\pi(15^2)}.100\\=\frac{1}{9\pi}[/tex]

Hence, the balloon radius increases at the rate of

[tex]\frac{1}{9\pi} cm/s \ or \ 0.0354cm/s[/tex]