Answer:
[tex]5.35 *10^{-4}[/tex]M
Explanation:
Equation for the reaction is as follows:
[tex]2CO_{(g)}[/tex] + [tex]O_{2(g)}[/tex] ⇄ [tex]2CO_{2(g)}[/tex]
By Applying the ICE Table; we have
[tex]2CO_{(g)}[/tex] + [tex]O_{2(g)}[/tex] ⇄ [tex]2CO_{2(g)}[/tex]
Initial x 0.0025 M 0.0010 M
Change 0 0 0
Equilibrium x 0.0025 M 0.0010 M
[tex]K_c =\frac{[CO_2]^2}{[CO]^2[O_2]}[/tex]
Given that [tex]K_c = 1.4*10^2[/tex] ; Then:
[tex]1.4 *10^2 = \frac{(0.001)^2}{(x)^2(0.025)}[/tex]
[tex]1.4 *10^2*0.025 = \frac{(0.001)^2}{(x)^2}[/tex]
[tex]3.5 =( \frac{(0.001)}{(x)})^2[/tex]
[tex]\sqrt {3.5} = \sqrt {( \frac{(0.001)}{(x)} )^2}[/tex]
[tex]1.87=\frac{(0.001)}{(x)}[/tex]
[tex](x)= \frac{(0.001)}{1.87 }[/tex]
[tex]x = 5.35 *10^{-4}[/tex]M
∴ The equilibrium concentration of CO = [tex]x = 5.35 *10^{-4}[/tex]M