Respuesta :
Answer: The equilibrium concentration of methane, carbon tetrachloride and [tex]CH_2Cl_2[/tex] are 0.2686 M, 0.2686 M and 0.0828 M respectively.
Explanation:
Molarity is calculated by using the equation:
[tex]\text{Molarity}=\frac{\text{Number of moles}}{\text{Volume of solution}}[/tex]
- For methane:
Moles of methane = 0.310 moles
Volume of solution = 1.00 L
[tex]\text{Molarity of methane}=\frac{0.310}{1}=0.310M[/tex]
- For carbon tetrachloride:
Moles of carbon tetrachloride = 0.310 moles
Volume of solution = 1.00 L
[tex]\text{Molarity of }CCl_4=\frac{0.310}{1}=0.310M[/tex]
For the given chemical equation:
[tex]CH_4(g)+CCl_4(g)\rightleftharpoons 2CH_2Cl_2(g)[/tex]
Initial: 0.310 0.310
At eqllm: 0.310-x 0.310-x 2x
The expression of [tex]K_c[/tex] for above equation follows:
[tex]K_c=\frac{[CH_2Cl_2]^2}{[CH_4][CCl_4]}[/tex]
We are given:
[tex]K_c=9.52\times 10^{-2}[/tex]
Putting values in above equation, we get:
[tex]9.52\times 10^{-2}=\frac{(2x)^2}{(0.310-x)\times (0.310-x)}\\\\x=-0.0565,0.0414[/tex]
Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of methane = (0.310 - x) = [0.310 - 0.0414] = 0.2686 M
Equilibrium concentration of carbon tetrachloride = (0.310 - x) = [0.310 - 0.0414] = 0.2686 M
Equilibrium concentration of [tex]CH_2Cl_2[/tex] = 2x = (2 × 0.0414) = 0.0828 M
Hence, the equilibrium concentration of methane, carbon tetrachloride and [tex]CH_2Cl_2[/tex] are 0.2686 M, 0.2686 M and 0.0828 M respectively.