calculate the frequency of the light emitted by a hydrogen atom during a transition of its electron from the n = 3 to n = 1 energy level based on the bohr theory

Respuesta :

Answer:

[tex]\nu=2.92\times 10^{15}\ Hz[/tex]

Explanation:

The expression for the energy of an electron in the nth orbit is:-

[tex]E_n=-2.18\times 10^{-18}\times \frac{1}{n^2}\ Joules[/tex]

For transitions:

[tex]Energy\ Difference,\ \Delta E= E_f-E_i =-2.18\times 10^{-18}(\frac{1}{n_f^2}-\frac{1}{n_i^2})\ J=2.18\times 10^{-18}(\frac{1}{n_i^2} - \dfrac{1}{n_f^2})\ J[/tex]

[tex]\Delta E=2.18\times 10^{-18}(\frac{1}{n_i^2} - \dfrac{1}{n_f^2})\ J[/tex]

Given, [tex]n_i=3\ and\ n_f=1[/tex]

[tex]\Delta E=2.18\times 10^{-18}(\frac{1}{3^2} - \dfrac{1}{1^2})\ J[/tex]

[tex]\Delta E=-1.94\times 10^{-18}\ J[/tex]  (negative sign indicates energy release)

Also, [tex]E=h\times \nu[/tex]

Where,  

h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]

[tex]1.94\times 10^{-18}=6.626\times 10^{-34}\times \nu[/tex]

[tex]\nu=2.92\times 10^{15}\ Hz[/tex]