Consider liquid n-hexane in a 50-mm diameter graduated cylinder. Air blows across the top of the cylinder. The distance from the liquid-gas interface to the top of the cylinder is 20 cm. Assume the diffusivity of n-hexane is 8.8.10^-6 m^2/s. The liquid n-hexane is at 25°C. Estimate the evaporation rate of the nhexane.

Respuesta :

The evaporation rate of the n-Hexane is [tex]7.85 \times 10^{-6} \mathrm{mol} / \mathrm{s}[/tex]

Explanation:

This is a situation regarding diffusing A through non-diffusing B.

A = n-Hexane B=Air

Where the molar flux is provided by,

[tex]N_{A}=D_{A B} P_{T}\left(P_{A 1}-P_{A 2}\right) / R T z P_{b m}[/tex]

[tex]\mathrm{D}_{\mathrm{AB}}=8.8 \times 10^{-6} \mathrm{m}^{2} / \mathrm{s}[/tex]

[tex]P_{t}=1 a t m=101325 P a\\[/tex]

[tex]\text { so, } P_{A 1}=[/tex] the vapor pressure at hexane [tex]25 \mathrm{C}[/tex] [tex]=20158.2 \mathrm{Pa}[/tex]

For wind, assume negligible hexane is present, hence [tex]P_{A 2}=0[/tex]

Now,

[tex]\mathrm{P}_{\mathrm{B} 1}=\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{A} 1}=101325-20158.2 \mathrm{P}_{\mathrm{a}}[/tex]

[tex]\mathrm{P}_{\mathrm{B} 2}=\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{A} 2}=\mathrm{P}_{\mathrm{T}}=101325 \mathrm{Pa}[/tex]

[tex]P_{B M}=\frac{\left(P_{B 2}-P_{B 1}\right)}{\log _{e}\left(P_{B 2} / P_{B 1}\right)}\\[/tex]

[tex]=\frac{101325-81166.8}{\ln \left(\frac{101325}{81166.8}\right) \mathrm{Pa}}[/tex]

[tex]=90873.57 \mathrm{Pa}[/tex]

[tex]R=8.314 \mathrm{J} / \mathrm{mol}-\mathrm{K}[/tex]

[tex]z=\text { distance }=20 \mathrm{cm}=0.2 \mathrm{m}\\[/tex]

where T = 298 K

substituting all in the equation, we get

[tex]\begin{aligned}&\mathrm{N}_{\mathrm{A}}=\\&\left(8.8 \times 10^{-6} \mathrm{m}^{2} / \mathrm{s}\right) \times 101325 \mathrm{Pa} \times(20158.2 \mathrm{Pa}) /(8.314 \mathrm{J} / \mathrm{mol}-\mathrm{K} \times 0.2 \mathrm{m} \times 298 \mathrm{K}\\&\times 90873.57 \mathrm{Pa})\end{aligned}[/tex]

[tex]=0.004 \mathrm{mol} / \mathrm{m}^{2} \mathrm{s}\\[/tex]

Now,Flux [tex]\times[/tex] area  = Molar rate of evaporation

Evaporation rate = [tex]0.004 \mathrm{mol} / \mathrm{m}^{2}-5 \mathrm{x}\left(\pi \mathrm{d}^{2} / 4 \mathrm{m}^{2}\right)=0.004 \times(3.14 \times 0.05 \times 0.05 / 4)[/tex]

Evaporation rate =[tex]7.85 \times 10^{-6} \mathrm{mol} / \mathrm{s}[/tex]