Respuesta :
Answer:
a. Process Capability = 0.8333
b. New Process Capability = 0.1667
c. Probability = 0.30854
Step-by-step explanation:
The Process capability of a process is determined using the capability index [tex]C_{pk}[/tex] . This capability index helps in determining whether the output of a process lies within the specification limits.
a. Given that
Mean, X = 100
Lower Specification Limit, LSL = 100 - 10 = 90
Upper Specification Limit, USL = 100 + 10 = 110
Standard Deviation, [tex]\alpha[/tex] = 4
Process Capability can therefore be calculated using the formula :
[tex]C_{pk}= min[\frac{X-LSL}{3\alpha }, \frac{USL-X}{3\alpha },]\\= min[\frac{(100-90)}{3*4 }, \frac{(110-100)}{3*4 },]\\=min[\frac{10}{12}, \frac{10}{12}]\\=min[0.8333, 0.8333] = 0.8333[/tex]
Hence, the process capability value for the process is 0.833
b. When the process average shifts to 92, the new process mean would be 92
X = 92
LSL = 90
USL = 110
Standard Deviation = 4
[tex]C_{pk} = min[\frac{X - LSL}{3\alpha }, \frac{USL - X}{3\alpha }]\\=min[\frac{(92-90)}{3*4}, \frac{(110-92)}{3*4}]\\=min(0.1667, 1.5)= 0.1667[/tex]
c. Probability of the defective unit after the shift :
We calculate the Z score of LSL like so :
[tex]Z_{LSL}=\frac{LSL - X}{\alpha }\\= \frac{90-92}{4}\\=- \frac {2}{4} = -0.5[/tex]
Using the "NORMDIST(Z)" function in Excel, we find the probability associated with [tex]Z_{LSL}[/tex] as 0.30854
Therefore the probability that the output will be less than 90 units is 0.30854