Respuesta :

caylus
Hello,

Answer B

h(x)=-3/5 x+1/2 ==>x=-3/5y+1/2
==>3/5 y=-x+1/2
==>y=-3/5 x+(1/2)/(3/5)
==>y=-3/5 x+5/6

Answer:

B. [tex]h^{-1}(x)=\frac{-5x}{3}+\frac{5}{6}[/tex]

Step-by-step explanation:

We have been given a function [tex]h(x)=-\frac{3}{5}x+\frac{1}{2}[/tex]. We are asked to find the inverse function of our given function.  

First of all, we replace h(x) by y as:

[tex]y=-\frac{3}{5}x+\frac{1}{2}[/tex]

To find inverse of our given function we will interchange x and y variables and solve for y.

[tex]x=-\frac{3}{5}y+\frac{1}{2}[/tex]

Upon subtracting 1/2 from both sides of equation, we will get:

[tex]x-\frac{1}{2}=-\frac{3}{5}y+\frac{1}{2}-\frac{1}{2}[/tex]

[tex]x-\frac{1}{2}=-\frac{3}{5}y[/tex]

Let us have a common denominator.

[tex]\frac{2x}{2}-\frac{1}{2}=-\frac{3}{5}y[/tex]

[tex]\frac{2x-1}{2}=-\frac{3}{5}y[/tex]

Multiplying both sides by [tex]-\frac{5}{3}[/tex],

[tex]-\frac{5}{3}*\frac{2x-1}{2}=-\frac{5}{3}*-\frac{3}{5}y[/tex]

[tex]\frac{-10x+5}{2*3}=y[/tex]

[tex]\frac{-10x}{6}+\frac{5}{6}=y[/tex]

[tex]\frac{-5x}{3}+\frac{5}{6}=y[/tex]

Replacing y by [tex]h^{-1}(x)[/tex] we will get,

[tex]h^{-1}(x)=\frac{-5x}{3}+\frac{5}{6}[/tex]

Therefore, the option B is the correct choice.

Therefore,