Use Green's Theorem to evaluate the line integral along the given positively oriented curve.
∫???? (3y + 7e√x) dx + (8x + 9 cosy²) dy
where C is the boundary of the region enclosed by the parabolas y = x² and x = y².

Respuesta :

By Green's theorem, the line integral is equivalent to the area integral

[tex]\displaystyle\int_C(3y+7e^{\sqrt x})\,\mathrm dx+(8x+9\cos(y^2))\,\mathrm dy=\int_0^1\int_{x^2}^{\sqrt x}\frac{\partial(8x+9\cos(y^2))}{\partial x}-\frac{\partial(3y+7e^{\sqrt x})}{\partial y}\,\mathrm dy\,\mathrm dx[/tex]

[tex]=\displaystyle5\int_0^1\int_{x^2}^{\sqrt x}\mathrm dy\,\mathrm dx=\boxed{\frac53}[/tex]