The pressure on the surface of a sphere of radius 1.2 cm is increased by 2.5×10⁷ Pa.
Calculate the resulting decrease in the volume of the sphere if it is made of lead. Bulk modulus for lead is 4.1×10¹⁰ Pa.

Respuesta :

Answer:

Volume decreases by 4.4134x10^-9m3

Explanation:

Detailed explanation and calculation is shown in the image below

Ver imagen tochjosh

Answer:

The resulting decrease in the volume is [tex]dV= 4.41*10^{-9} m^3[/tex]

Explanation:

      The volume of the sphere is mathematically represented as

                                     [tex]V_i=\frac{4}{3} \pi r^2[/tex]

Substituting 1.2cm = [tex]\frac{1.2}{100} = 0.012m[/tex] for radius

                                   [tex]V_i = \frac{4}{3} * 3.142 * (0.012)^3[/tex]

                                       [tex]= 7.23*10^{-6} m^3[/tex]

  Let denote the change in volume as [tex]dV[/tex]

Bulk Modulus is mathematically is mathematically represented as

                    [tex]\beta = \frac{V_S}{V_x}[/tex]

Where [tex]V_S[/tex] is the volumetric stress and it is mathematically evaluated as

                    [tex]V_S = P* V[/tex]

substituting  [tex]2.5*10^7Pa[/tex] for P and [tex]7.23*10^{-6} m^3[/tex] for V

                    [tex]V_S = 2.5*10^7 * 7.23*10^{-6}[/tex]

                         [tex]180.75 Pa \cdot m^3[/tex]

And [tex]V_x[/tex] is the volumetric strain and it is mathematically evaluated as

                     [tex]V_x = \frac{dV}{V}[/tex]

So substituting this for [tex]V_x[/tex] into the Bulk Modulus equation and substituting values

               [tex]4.1 *0^10 = \frac{180.75}{\frac{dV}{7.23*10^{-6}} }[/tex]

Making dV the subject

                 [tex]dV = \frac{180.75}{4.1*10^10}[/tex]

                      [tex]dV= 4.41*10^{-9} m^3[/tex]