Which are the solutions of the quadratic equation? x2 = –5x – 3 –5, 0 StartFraction negative 5 minus StartRoot 13 EndRoot Over 2 EndFraction comma StartFraction negative 5 + StartRoot 13 EndRoot Over 2 EndFraction StartFraction 5 minus StartRoot 13 EndRoot Over 2 EndFraction comma StartFraction 5 + StartRoot 13 EndRoot Over 2 EndFraction 5, 0

Respuesta :

Given:

The quadratic equation is [tex]x^{2}=-5 x-3[/tex]

We need to determine the solutions of the quadratic equation.

Solution:

Let us solve the equation to determine the value of x.

Adding both sides of the equation by 5x and 3, we get;

[tex]x^{2}+5 x+3=0[/tex]

The solution of the equation can be determined using quadratic formula.

Thus, we get;

[tex]x=\frac{-5 \pm \sqrt{5^{2}-4 \cdot 1 \cdot 3}}{2 \cdot 1}[/tex]

[tex]x=\frac{-5 \pm \sqrt{25-12}}{2 }[/tex]

[tex]x=\frac{-5 \pm \sqrt{13}}{2 }[/tex]

Thus, the two roots of the equation are [tex]x=\frac{-5 + \sqrt{13}}{2 }[/tex] and [tex]x=\frac{-5- \sqrt{13}}{2 }[/tex]

Hence, the solutions of the equation are [tex]x=\frac{-5 + \sqrt{13}}{2 }[/tex] and [tex]x=\frac{-5- \sqrt{13}}{2 }[/tex]

Answer: B

Step-by-step explanation:

it is B