Amanda wants to fly a kite. The kite is composed of two isosceles triangles,
ΔABD and ΔBCD. The height of ΔBCD is 2 times the height of ΔABD, and
the width of the kite, BD, is 1.5 times the height of the larger triangle.
If the area of the kite is 1800 cm²
, what is the perimeter of the kite?

Amanda wants to fly a kite The kite is composed of two isosceles triangles ΔABD and ΔBCD The height of ΔBCD is 2 times the height of ΔABD and the width of the k class=

Respuesta :

Geometry

The perimeter of kite is 172.11 cm

Step-by-step explanation:

ΔABD and ΔBCD are isosceles triangles

Join the two points A and C and the let the point be O where this lines cuts BD

Given

CO = 2 × AO ( CO is height of ΔBCD, AO is height of ΔA

BD )

and

BD = 1.5 × CO

Area of Kite = Area of ΔBCD + Area of ΔABD

If the height of ΔABD = h then height of ΔBCD =2×h

DB = 1.5 × 2×h = 3×h

Area of ΔABD = [tex]\frac{1}{2}[/tex] ×  [tex]3h[/tex] × [tex]2h[/tex]

Area of ΔBCD = [tex]\frac{1}{2}[/tex]× [tex]3h[/tex]× [tex]h[/tex]

Area of Kite = 1800 = Area of ΔABD + Area of ΔBCD

1800 = [tex]\frac{6}{2\\}[/tex] × [tex]h^{2}[/tex] +  [tex]\frac{3}{2}[/tex] × [tex]h^{2}[/tex] = [tex]\frac{9}{2}[/tex] ×[tex]h^{2}[/tex]

⇒ [tex]h^{2} = 400\\[/tex]

⇒ h = 20

[tex]AB^{2} = (20)^{2} + (30 )^{2}[/tex]

AB = [tex]10\sqrt{13}[/tex] cm

[tex]BC^{2} = 40^{2} + 30^{2}[/tex]

BC = 50 cm

So the perimeter of kite = AB + BC +CD +AD

⇒ [tex]10\sqrt{13} + 50 + 50 + 10\sqrt{13}[/tex]

⇒100 + 20[tex]\sqrt{13}[/tex]

⇒172.11 cm

Hence the perimeter of kite is 172.11 cm

Answer:

idk

Step-by-step explanation:

idk idk idk