contestada

​ An electron is accelerated from rest through 2300 V and then enters a region of uniform magnetic field with magnitude 1.25 T. What is the magnitude of the maximum magnetic force acting on the electron?

Respuesta :

Answer:

Explanation:

Given that,

The electron accelerated from rest through 2300V, then the Potential difference is 2300V

V = 2300V.

Magnetic field of 1.25T

B= 1.25T

Mass of electron

m = 9.11 ×10^-31kg

Charge of an electron

q = 1.602 ×10^-19C

Maximum magnetic force?

Maximum magnetic force can be determined using

Fmax = qvB

We don't know the velocity(v) but it can be determine using

Work done by potential = Kinectic energy

qV = ½mv²

Rearranging

v = √(2qV/m)

v = √(2×1.602×10^-19 × 2300/9.11×10^-31)

v = 2.84 × 10^7 m/s

Then,

Maximum Magnetic force

Fmax = qvB

Fmax=1.602×10^-19×2.84×10^7×1.25

Fmax = 5.7 × 10^-12 N

The magnitude of the maximum magnetic force is 5.7 × 10^-12 N

Answer:

[tex]F_{maximum} =5.68*10^{-12} \ \ N[/tex]

Explanation:

Electron acquire through kinetic energy is given as:

[tex]K = \frac{1}{2}mv^2\\ v^2 = \frac{2 \ K}{m}\\v = \sqrt{\frac{2 \ K}{m}}[/tex]

Given that :

Electron energy expanded = 2300 V

= 2300 eV

[tex]= 2300 *1.6*10^{-19} \ J[/tex]

= [tex]3.68*10^{-16} \ J[/tex]

Velocity acquired [tex]v = \sqrt{\frac{2 K}{m}}[/tex]

[tex]v = \sqrt{\frac{2 *3.66*10^{-16} }{9.11*10^{-31}}}[/tex]

[tex]v = 28423641.62[/tex]

[tex]v = 2.84 *10^7 \ m/s[/tex]

Force exerted by the magnetic field

[tex]F_B = Bvq sin \theta[/tex]

where θ = 90° and sin  θ = sin 90 ° = 1

[tex]F_{maximum} = 1.6*10^{-19} * 2.84*10^7 *1.25[/tex]

[tex]F_{maximum} =5.68*10^{-12} \ \ N[/tex]