A fixed amount of a particular ideal gas at 168C and a pressure of 1.75 3 105 Pa occupies a volume of 2.75 m3. If the volume is increased to 4.20 m3 and the temperature is raised to 26.48C, what will be the new pressure of the gas?

Respuesta :

Answer:

The new pressure of a gas is [tex]4.97 \times 10^{5}[/tex] Pa

Explanation:

Given:

Initial pressure [tex]P_{1} = 1.75 \times 10^{5}[/tex] Pa

Initial temperature [tex]T_{1} = 16.8 + 273 = 289.8[/tex] K

Final temperature [tex]T_{2} = 26.48 + 273=299.48[/tex] K

Initial volume [tex]V_{1} = 2.75 m^{3}[/tex]

Final volume [tex]V_{2} = 4.20m^{3}[/tex]

From ideal gas equation,

    [tex]PV = nRT[/tex]

Where [tex]n =[/tex] number of moles, here [tex]n =1[/tex], [tex]R =[/tex] gas constant

   [tex]\frac{PV}{T} = constant[/tex]

For finding new pressure of gas,

 [tex]\frac{P_{1} V_{1} }{P_{2} V_{2} } =\frac{T_{1} }{T_{2} }[/tex]

 [tex]P_{2} = \frac{P_{1} V_{1} T_{2} }{T_{1} }[/tex]

 [tex]P_{2} = \frac{1.75 \times 10^{5} \times 2.75 \times 299.48}{289.8}[/tex]

 [tex]P_{2} = 4.97 \times 10^{5}[/tex] Pa

Therefore, the new pressure of a gas is [tex]4.97 \times 10^{5}[/tex] Pa