Answer:
The new pressure of a gas is [tex]4.97 \times 10^{5}[/tex] Pa
Explanation:
Given:
Initial pressure [tex]P_{1} = 1.75 \times 10^{5}[/tex] Pa
Initial temperature [tex]T_{1} = 16.8 + 273 = 289.8[/tex] K
Final temperature [tex]T_{2} = 26.48 + 273=299.48[/tex] K
Initial volume [tex]V_{1} = 2.75 m^{3}[/tex]
Final volume [tex]V_{2} = 4.20m^{3}[/tex]
From ideal gas equation,
[tex]PV = nRT[/tex]
Where [tex]n =[/tex] number of moles, here [tex]n =1[/tex], [tex]R =[/tex] gas constant
[tex]\frac{PV}{T} = constant[/tex]
For finding new pressure of gas,
[tex]\frac{P_{1} V_{1} }{P_{2} V_{2} } =\frac{T_{1} }{T_{2} }[/tex]
[tex]P_{2} = \frac{P_{1} V_{1} T_{2} }{T_{1} }[/tex]
[tex]P_{2} = \frac{1.75 \times 10^{5} \times 2.75 \times 299.48}{289.8}[/tex]
[tex]P_{2} = 4.97 \times 10^{5}[/tex] Pa
Therefore, the new pressure of a gas is [tex]4.97 \times 10^{5}[/tex] Pa