A radioactive substance decays exponentially. A scientist begins with 140 milligrams of a radioactive substance. After 25 hours, 70 mg of the substance remains. How many milligrams will remain after 35 hours

Respuesta :

Answer:

Therefore 53.05 mg will remain of the given radioactive substance after 35 hours.

Step-by-step explanation:

Radioactive Decay:

[tex]\frac{dN}{dt}\propto N[/tex]

[tex]\Rightarrow \frac{dN}{dt}=\lambda N[/tex]

[tex]\Rightarrow \frac{dN}{N}=\lambda dt[/tex]

Integrating both sides

[tex]\int \frac{dN}{N}=\int\lambda dt[/tex]

[tex]\Rightarrow ln |N|= \lambda t+c_1[/tex]

[tex]\Rightarrow N= e^{\lambda t+c_1}[/tex]

[tex]\Rightarrow N= e^{\lambda t}.e^{c_1}[/tex]

[tex]\Rightarrow N=c e^{\lambda t}[/tex]                  [ [tex]e^{c_1}=c[/tex] ]

When t=0, [tex]N=N_0[/tex]= initial amount

[tex]N_0=c e^{\lambda .0}[/tex]

[tex]\Rightarrow N_0=c[/tex]

Therefore the decay equation is

[tex]N=N_0e^{\lambda t}[/tex]

Given that, [tex]N_0[/tex]= Initial amount of the radioactive substance= 140 mg

After 25 hours, 70 mg of substance remains.

N= 70 mg, t=25 hours

[tex]N=N_0e^{\lambda t}[/tex]

[tex]\Rightarrow 70 =140e^{\lambda \times 25}[/tex]

[tex]\Rightarrow e^{\lambda \times 25}=\frac{70}{140}[/tex]

[tex]\Rightarrow ln|e^{\lambda \times 25}|=ln|\frac{1}{2}|[/tex]

[tex]\Rightarrow \lambda \times 25}=-ln|2|[/tex]                [ [tex]ln |\frac12|=ln 1-ln 2=0-ln 2=-ln 2[/tex]  ]

[tex]\Rightarrow \lambda =-\frac{ln|2|}{25}[/tex]

The decay equation becomes

[tex]N=N_0e^{-\frac{ln|2|}{25}t}[/tex]

Now putting t= 35

[tex]N=140 e^{-\frac{ln|2|}{25}.35}[/tex]

   = 53.05 mg

Therefore 53.05 mg will remain of the given radioactive substance after 35 hours.