The surface area of a right circular cone of radius r and height h is S = πr√ r 2 + h 2 , and its volume is V = 1 3 πr2h. What is the largest volume of a right circular cone if its surface area is S? Use Lagrange multipliers to solve the problem.

Respuesta :

Answer:

Required largest volume is 0.407114 unit.

Step-by-step explanation:

Given surface area of a right circular cone of radious r and height h is,

[tex]S=\pi r\sqrt{r^2+h^2}[/tex]

and volume,

[tex]V=\frac{1}{3}\pi r^2 h[/tex]

To find the largest volume if the surface area is S=8 (say), then applying Lagranges multipliers,

[tex]f(r,h)=\frac{1}{3}\pi r^2 h[/tex]

subject to,

[tex]g(r,h)=\pi r\sqrt{r^2+h^2}=8\hfill (1)[/tex]

We know for maximum volume [tex]r\neq 0[/tex]. So let [tex]\lambda[/tex] be the Lagranges multipliers be such that,

[tex]f_r=\lambda g_r[/tex]

[tex]\implies \frac{2}{3}\pi r h=\lambda (\pi \sqrt{r^2+h^2}+\frac{\pi r^2}{\sqrt{r^2+h^2}})[/tex]

[tex]\implies \frac{2}{3}r h= \lambda (\sqrt{r^2+h^2}+\frac{ r^2}{\sqrt{r^2+h^2}})\hfill (2)[/tex]

And,

[tex]f_h=\lambda g_h[/tex]

[tex]\implies \frac{1}{3}\pi r^2=\lambda \frac{\pi rh}{\sqrt{r^2+h^2}}[/tex]

[tex]\implies \lambda=\frac{r\sqrt{r^2+h^2}}{3h}\hfill (3)[/tex]

Substitute (3) in (2) we get,

[tex]\frac{2}{3}rh=\frac{r\sqrt{R^2+h^2}}{3h}(\sqrt{R^2+h^2+}+\frac{r^2}{\sqrt{r^2+h^2}})[/tex]

[tex]\implies \frac{2}{3}rh=\frac{r}{3h}(2r^2+h^2)[/tex]

[tex]\implies h^2=2r^2[/tex]

Substitute this value in (1) we get,

[tex]\pi r\sqrt{h^2+r^2}=8[/tex]

[tex]\implies \pi r \sqrt{2r^2+r^2}=8[/tex]

[tex]\implies r=\sqrt{\frac{8}{\pi\sqrt{3}}}\equiv 1.21252[/tex]

Then,

[tex]h=\sqrt{2}(1.21252)\equiv 1.71476[/tex]

Hence largest volume,

[tex]V=\frac{1}{3}\times \pi \times\frac{\pi}{8\sqrt{3}}\times 1.71476=0.407114[/tex]