Respuesta :

Given:

DE = (6x - 9) cm

EF = (4x + 4) cm

LM = 14 cm

MN = 16 cm

To find:

The value of x.

Solution:

If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally.

[tex]$\Rightarrow \frac{DE}{EF} =\frac{LM}{MN}[/tex]

[tex]$\Rightarrow \frac{6x-9}{4x+4} =\frac{14}{16}[/tex]

Do cross multiplication.

[tex]$\Rightarrow 16( {6x-9})=14 ({4x+4} )[/tex]

[tex]$\Rightarrow 96x-144=56 x+56[/tex]

Add 144 on both sides.

[tex]$\Rightarrow 96x-144+144=56 x+56+144[/tex]

[tex]$\Rightarrow 96x=56 x+200[/tex]

Subtract 56x from both sides.

[tex]$\Rightarrow 96x-56x=56 x+200-56x[/tex]

[tex]$\Rightarrow 40x=200[/tex]

Divide by 40 on both sides, we get

[tex]$\Rightarrow x=5[/tex]

The value of x is 5.