Respuesta :

Answer:

[tex]y=\frac{1}{x^{2}-6x+13 }[/tex]

Step-by-step explanation:

We have given,

                        [tex]\frac{dy}{dx}=y^{2}(6-2x)[/tex]

and initial condition [tex]x=3,\ y=\frac{1}{4}[/tex]

Now,

[tex]\frac{dy}{dx}=y^{2}(6-2x)[/tex]

Rearranging the variables, we get

[tex]\frac{dy}{y^{2} }=(6-2x).dx[/tex]

Applying integration both sides, we get

[tex]\int\ {\frac{dy}{y^{2} } } \,=\int\ {(6-2x).} \, dx[/tex]

⇒[tex]\frac{-1}{y} =6x-\frac{2x^{2} }{2}[/tex]

⇒ [tex]\frac{-1}{y}=6x-x^{2} +C[/tex]                  

Putting the initial condition (i.e., [tex]x=3,\ y=\frac{1}{4}[/tex]), we get

⇒ [tex]-4=6\times3-(3)^{2}+C[/tex]

⇒ [tex]-4=18-9+C[/tex]

∴ [tex]C=-13[/tex]

We have,  [tex]\frac{-1}{y}=6x-x^{2} +C[/tex]    

now putting the value of [tex]C[/tex] in above equation, we get

⇒ [tex]\frac{-1}{y}=6x-x^{2} -13[/tex]

⇒  [tex]\frac{1}{y}=-6x+x^{2} +13[/tex]

[tex]y=\frac{1}{x^{2}-6x+13 }[/tex]