Given:
Height of top cone = 3 mm
Radius = 2 mm
Height of cylinder = 4 mm
Height of bottom cone = 1 mm
To find:
The volume of the composite figure
Solution:
Volume of 3 mm tall cone [tex]=\frac{1}{3} \pi r^2h[/tex]
[tex]=\frac{1}{3} \pi \times 2^2\times 3[/tex]
Volume of 3 mm tall cone = 4π mm³
Volume of cylinder = [tex]\pi r^{2} h[/tex]
[tex]=\pi\times 2^{2} \times 4[/tex]
Volume of cylinder = 16π mm³
Volume of 1 mm tall cone [tex]=\frac{1}{3} \pi r^2h[/tex]
[tex]=\frac{1}{3} \pi \times 2^2\times 1[/tex]
Volume of 1 mm tall cone = 1.33π mm³
Volume of composite figure = 4π + 16π + 1.33π
= 21.33π mm³
The volume of the composite figure is 21.33π mm³.