Respuesta :
Answer:
[tex]Ksp=4.9 \times 10^{-8}[/tex]
Explanation:
balanced chemical reaction:
[tex]Cu(IO_4)_2 \rightarrow CU^{2+} +2 IO_4^-[/tex]
concentration or molarity of Cu(IO4)2= mole/Volume in L
[tex]mole=\frac{mass\, given}{molecular\,weight}[/tex]
[tex]mole=\frac{0.30}{445.4}[/tex]
[tex]mole=6.74 \times 10^{-4}[/tex]
volume= 300 ml=0.3 L
[tex]molarity =\frac{mole}{volume\, in\, L}[/tex]
[tex]molarity=2.3\times 10^{-3}[/tex]
Solubility means maximum salt which can be dissolved.
lets solubility=S
[tex][CU^{2+}]=S;[/tex]
[tex][IO_4^-] =2S[/tex]
[tex]S=2.3\times 10^{-3}[/tex]
[tex]Ksp=S\times(2S)^2[/tex]
[tex]Ksp=4.9 \times 10^{-8}[/tex]
The solubility product constant [tex]K_{sp}[/tex] will be "[tex]1.2\times 10^{-9}[/tex]".
The reaction,
→ [tex]Ci(IO_3)_2(s) \rightleftharpoons Cu_{2+} (aq) +2IO_4^- (aq)[/tex]
Given:
Molar mass,
- 0.30 g
Now,
→ Number of moles of [tex]Cu(IO_4)_2[/tex] = [tex]0.30\times \frac{mole}{445.4}[/tex]
= [tex]6.74\times 10^{-4} \ mole[/tex]
→ Concentration of [tex]Cu(IO_4)_2[/tex] = [tex]\frac{6.74\times 10^{-4}}{300.0\times \frac{L}{1000\ mL} }[/tex]
= [tex]2.25\times 10^{-3} \ mol/L[/tex]
hence,
→ Solubility product constant,
[tex]K_{sp} = [Cu^{2+}][IO_4^-]^2[/tex]
[tex]= (2.25\times 10^{-3})(2.25\times 10^{-3})^2[/tex]
[tex]= 1.2\times 10^{-9}[/tex]
Thus the above approach is right.
Learn more about Ksp here:
https://brainly.com/question/15755505