Answer:
[tex]width=10\sqrt{15}\ in[/tex]
Step-by-step explanation:
-A rectangle's area is given by:
[tex]A=lw\\\\l=length\\w=width[/tex]
Given A=[tex]30\sqrt{3750}[/tex] and [tex]l=3\sqrt{250}[/tex], we substitute in the formula to solve for the width as follows:
[tex]A=lw\\\\30\sqrt{3750}=3\sqrt{250}\times w\\\\w=\frac{30\sqrt{3750}}{3\sqrt{250}}\\\\w=10\frac{\sqrt{3750}}{\sqrt{250}}\\\\=10\times \sqrt{\frac{3750}{250}}\\\\=10\sqrt{15}\ in[/tex]
Hence , the rectangle's width is [tex]10\sqrt{15}\ in[/tex]