Respuesta :

Given:

m∠D = 5x - 10

m(ar EC) = 60°

m(ar RB) = 13x + 7

To find:

The value of x.

Solution:

If two secants intersect outside a circle, then the measure of the angle formed is one-half the positive difference of the measures of the intercepted arcs.

[tex]$\Rightarrow \angle D = \frac{1}{2} (m \ ar(RB) - m \ ar(EC) )[/tex]

[tex]$\Rightarrow 5x-10 = \frac{1}{2} (13x+7 - 60 )[/tex]

[tex]$\Rightarrow 5x-10 = \frac{1}{2} (13x-53 )[/tex]

Multiply by 2 on both sides.

[tex]$\Rightarrow 2\times ( 5x-10) = 2 \times \frac{1}{2} (13x-53 )[/tex]

[tex]$\Rightarrow 10x-20 =13x-53[/tex]

Add 53 on both sides, we get

[tex]$\Rightarrow 10x+33 =13x[/tex]

Subtract 10x on both sides, we get

[tex]$\Rightarrow 33 =3x[/tex]

Divide by 3 on both sides, we get

[tex]$\Rightarrow 11=x[/tex]

The value of x is 11.