Answer:
[tex]\$5294.72[/tex]
Step-by-step explanation:
GIVEN: Daniel invests [tex]\$2,037[/tex] in a retirement account with a fixed annual interest rate of [tex]6\%[/tex] compounded [tex]6[/tex] times per year.
TO FIND: What will the account balance be after [tex]16[/tex] years
SOLUTION:
Amount invested by Daniel [tex]=\$2037[/tex]
Annual interest rate [tex]=6\%[/tex]
Total amount generated by compound interest is [tex]=P(1+\frac{r}{n})^n^t[/tex]
Here Principle amount [tex]P=\$2037[/tex]
rate of interest [tex]r=6\%[/tex]
number of times compounding done in a year [tex]n=6[/tex]
total duration of time [tex]nt=16\text{ years}[/tex]
putting values we get
=[tex]2037(1+\frac{6}{6\times100})^1^6[/tex]
[tex]=2037(\frac{101}{100})^1^6[/tex]
[tex]=\$5294.72[/tex]
Hence the total balance after [tex]16\text{ years}[/tex] will be [tex]\$5294.72[/tex]