Respuesta :

Answer:

[tex]\$5294.72[/tex]

Step-by-step explanation:

GIVEN: Daniel invests [tex]\$2,037[/tex] in a retirement account with a fixed annual interest rate of [tex]6\%[/tex] compounded [tex]6[/tex] times per year.

TO FIND: What will the account balance be after [tex]16[/tex] years

SOLUTION:

Amount invested by Daniel [tex]=\$2037[/tex]

Annual interest rate [tex]=6\%[/tex]      

Total amount generated by compound interest is  [tex]=P(1+\frac{r}{n})^n^t[/tex]

Here Principle amount [tex]P=\$2037[/tex]

rate of interest [tex]r=6\%[/tex]

number of times compounding done in a year [tex]n=6[/tex]

total duration of time [tex]nt=16\text{ years}[/tex]

putting values we get

=[tex]2037(1+\frac{6}{6\times100})^1^6[/tex]

[tex]=2037(\frac{101}{100})^1^6[/tex]

[tex]=\$5294.72[/tex]

Hence the total balance after [tex]16\text{ years}[/tex] will be [tex]\$5294.72[/tex]