Answer:
Water will boil at [tex]76^{0}\textrm{C}[/tex].
Explanation:
According to clausius-clapeyron equation for liquid-vapor equilibrium:
[tex]ln(\frac{P_{2}}{P_{1}})=\frac{-\Delta H_{vap}^{0}}{R}[\frac{1}{T_{2}}-\frac{1}{T_{1}}][/tex]
where, [tex]P_{1}[/tex] and [tex]P_{2}[/tex] are vapor pressures of liquid at [tex]T_{1}[/tex] (in kelvin) and [tex]T_{2}[/tex] (in kelvin) temperatures respectively.
Here, [tex]P_{1}[/tex] = 760.0 mm Hg, [tex]T_{1}[/tex] = 373 K, [tex]P_{2}[/tex] = 314.0 mm Hg
Plug-in all the given values in the above equation:
[tex]ln(\frac{314.0}{760.0})=\frac{-40.7\times 10^{3}\frac{J}{mol}}{8.314\frac{J}{mol.K}}\times [\frac{1}{T_{2}}-\frac{1}{373K}][/tex]
or, [tex]T_{2}=349 K[/tex]
So, [tex]T_{2}=349K=(349-273)^{0}\textrm{C}=76^{0}\textrm{C}[/tex]
Hence, at base camp, water will boil at [tex]76^{0}\textrm{C}[/tex]