Respuesta :
Given Information:
Inductance = L = 5 mH = 0.005 H
Time = t = 2 seconds
Required Information:
Current at t = 2 seconds = i(t) = ?
Energy at t = 2 seconds = W = ?
Answer:
Current at t = 2 seconds = i(t) = 735.75 A
Energy at t = 2 seconds = W = 1353.32 J
Explanation:
The voltage across an inductor is given as
[tex]V(t) = 5(1-e^{-0.5t})[/tex]
The current flowing through the inductor is given by
[tex]i(t) = \frac{1}{L} \int_0^t \mathrm{V(t)}\,\mathrm{d}t \,+ i(0)[/tex]
Where L is the inductance and i(0) is the initial current in the inductor which we will assume to be zero since it is not given.
[tex]i(t) = \frac{1}{0.005} \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \,+ 0\\\\i(t) = 200 \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \\\\i(t) = 200 \: [ {5\: (t + \frac{e^{-0.5t}}{0.5})]_0^t \\i(t) = 200\times5\: \: [ { (t + 2e^{-0.5t} + 2 )] \\[/tex]
[tex]i(t) = 1000t +2000e^{-0.5t} -2000\\[/tex]
So the current at t = 2 seconds is
[tex]i(t) = 1000(2) +2000e^{-0.5(2)} -2000\\\\i(t) = 735.75 \: A[/tex]
The energy stored in the inductor at t = 2 seconds is
[tex]W = \frac{1}{2}Li(t)^{2}\\\\W = \frac{1}{2}0.005(735.75)^{2}\\\\W = 1353.32 \:J[/tex]