Respuesta :

Answer:

x = -8 + 5 [tex]\sqrt{2}[/tex]  or  x = -8 - 5[tex]\sqrt{2}[/tex]

Step-by-step explanation:

let u = x + 2

then  (x + 2)2 + 12(x + 2) - 14 = 0 becomes:

u^2 + 12*u  - 14  = 0

Quadratic Formula:    u = -b/(2a) +  root(b^2  - 4ac) / (2a)

u = -12/(2)  +  root (12^2 - 4*(-14) ) /(2)

u = -6  +  root( 144 + 56) / 2

u = -6 +  root(200)/2

u = -6 + 5 root(2)

or u = -6 - 5root(2)

replace u = x + 2

x + 2 = -6 + 5root(2)

x = -8 + 5 root(2)  or  x = -8 - 5root(2)

----------------

Do Completing the Square:

u^2  + 12 u + 36 - 36 - 14 = 0

(u + 6)^2 - 50 = 0

(u + 6)^2 = 50

u + 6 = root(50)

u = -6 + 5root(2)  OR    u = -6 - 5root(2)

Answer:

A

Step-by-step explanation:

Ver imagen dilnoor123