contestada

An electric fan is turned off, and its angular velocity decreases uniformly from 500 rev/min to 200 rev/min in 4.00 s.
(a) Find the angular acceleration in rev/s^2 and the number of revolutions made by the motor in the 4.00-s interval.
(b) How many more seconds are required for the fan to come to rest if the angular acceleration remains constant at the value calculated in part (a)?

Respuesta :

Answer:

a) -1.25 rev/s² and 23.3 rev

b)  2.67s

Explanation:

a) ω[tex]Ф_o_z[/tex] = (500 rev/min)(1min/ 60s) => 8.333 rev/s

ω[tex]Ф_Z[/tex]= (200 rev/min)(1min/ 60s) => 3.333rev/s

time 't'= 4 s

angular acceleration 'α[tex]Ф_Z[/tex]'=?

constant angular acceleration equation is given by,

ω[tex]Ф_Z[/tex]= ω[tex]Ф_o_z[/tex] + α[tex]Ф_Z[/tex]t

α[tex]Ф_Z[/tex]= (ω[tex]Ф_Z[/tex] - ω[tex]Ф_o_z[/tex] )/t => (3.333-8.333)/4

α[tex]Ф_Z[/tex]= -1.25 rev/s²

θ-θ[tex]Ф_o[/tex] = ω[tex]Ф_o_z[/tex] t + 1/2α[tex]Ф_Z[/tex]t²

      =(8.333)(4) + 1/2 (-1.25)(4)²

      =23.3 rev

b) ω[tex]Ф_Z[/tex]=0   (comes to rest)

ω[tex]Ф_o_z[/tex] = 3.333 rev/s

α[tex]Ф_Z[/tex]= -1.25 rev/s²

ω[tex]Ф_Z[/tex]= ω[tex]Ф_o_z[/tex] + α[tex]Ф_Z[/tex]t

t= (ω[tex]Ф_Z[/tex] - ω[tex]Ф_o_z[/tex])/α[tex]Ф_Z[/tex] => (0- 3.333)/-1.25

t= 2.67s

a) The motor decelerates at a rate of [tex]\frac{5}{4}[/tex] revolutions per square second.

b) A time of 6.667 seconds is required for the fan to come to rest.

a) Let suppose that the electric fan decelerates uniformly. The angular aceleration experienced by the fan ([tex]\alpha[/tex]), in radians per square second, is described below:

[tex]\alpha = \frac{\omega-\omega_{o}}{t}[/tex] (1)

Where:

  • [tex]\omega_{o}[/tex] - Initial angular speed, in revolutions per second.
  • [tex]\omega[/tex] - Final angular speed, in revolutions per second.
  • [tex]t[/tex] - Time, in seconds.

If we know that [tex]\omega_{o} = \frac{25}{3}\,\frac{rev}{s}[/tex], [tex]\omega = \frac{10}{3} \,\frac{rev}{s}[/tex] and [tex]t = 4\,s[/tex], then the angular acceleration experienced by the motor is:

[tex]\alpha = \frac{\frac{10}{3}\,\frac{rev}{s}-\frac{25}{3}\,\frac{rev}{s}}{4\,s}[/tex]

[tex]\alpha = -\frac{5}{4}\,\frac{rev}{s^{2}}[/tex]

The motor decelerates at a rate of [tex]\frac{5}{4}[/tex] revolutions per square second.

b) The time taken by the motor to come to rest is described by the following kinematic equation:

[tex]t = \frac{\omega - \omega_{o}}{\alpha}[/tex] (2)

If we know that [tex]\omega_{o} = \frac{25}{3}\,\frac{rev}{s}[/tex], [tex]\omega = 0 \,\frac{rev}{s}[/tex] and [tex]\alpha = -\frac{5}{4}\,\frac{rev}{s^{2}}[/tex], then the time taken by the motor is:

[tex]t = \frac{0\,\frac{rev}{s}-\frac{25}{3}\,\frac{rev}{s}}{-\frac{5}{4}\,\frac{rev}{s^{2}} }[/tex]

[tex]t = 6.667\,s[/tex]

A time of 6.667 seconds is required for the fan to come to rest.

We kindly invite to check this question on uniform accelerated motion: https://brainly.com/question/12920060