Respuesta :

Answer:

17

Step-by-step explanation:

∫ x² e⁻³ˣ dx = -1/27 e⁻³ˣ [Ax² + Bx + E] + C

Take derivative of both sides:

x² e⁻³ˣ = d/dx {-1/27 e⁻³ˣ [Ax² + Bx + E] + C}

x² e⁻³ˣ = -1/27 d/dx {e⁻³ˣ [Ax² + Bx + E]}

-27x² e⁻³ˣ = d/dx {e⁻³ˣ [Ax² + Bx + E]}

Use product rule to evaluate the derivative:

-27x² e⁻³ˣ = {e⁻³ˣ [2Ax + B] − 3e⁻³ˣ [Ax² + Bx + E]}

-27x² e⁻³ˣ = e⁻³ˣ {2Ax + B − 3 [Ax² + Bx + E]}

-27x² e⁻³ˣ = e⁻³ˣ [2Ax + B − 3Ax² − 3Bx − 3E]

-27x² e⁻³ˣ = e⁻³ˣ [-3Ax² + (2A − 3B) x + (B − 3E)]

-27x² = -3Ax² + (2A − 3B) x + (B − 3E)

Match the coefficients:

-27 = -3A

0 = 2A − 3B

0 = B − 3E

Solve the system of equations:

A = 9

B = 6

E = 2

Therefore, A + B + E = 17.