Respuesta :

Answer:

i) SF: [tex] v(x) = \frac{(w_0* x )^2}{2L} [/tex]

ii) BM : [tex] = \frac{(w_0*x)^3}{6L} [/tex]

Explanation:

Let's take,

[tex] \frac{y}{w_0} = \frac{x}{L} [/tex]

Making y the subject of formula, we have :

[tex] y = \frac{x}{L} * w_0 [/tex]

For shear force (SF), we have:

This is the area of the diagram.

[tex] v(x) = \frac{1}{2} * y = \frac{1}{2} * \frac{x}{L} * w_0[/tex]

[tex] = \frac{(w_0* x )^2}{2L} [/tex]

The shear force equation =

[tex] v(x) = \frac{(w_0* x )^2}{2L} [/tex]

For bending moment (BM):

[tex] BM = v(x) * \frac{x}{3} [/tex]

[tex] = \frac{(w_0* x )^2}{2L} * \frac{x}{3} [/tex]

[tex] = \frac{(w_0*x)^3}{6L} [/tex]

The bending moment equation =

[tex] = \frac{(w_0*x)^3}{6L} [/tex]