Find the mathematical equation for SF distribution and BM diagram for the beam shown in figure 1.

Answer:
i) SF: [tex] v(x) = \frac{(w_0* x )^2}{2L} [/tex]
ii) BM : [tex] = \frac{(w_0*x)^3}{6L} [/tex]
Explanation:
Let's take,
[tex] \frac{y}{w_0} = \frac{x}{L} [/tex]
Making y the subject of formula, we have :
[tex] y = \frac{x}{L} * w_0 [/tex]
For shear force (SF), we have:
This is the area of the diagram.
[tex] v(x) = \frac{1}{2} * y = \frac{1}{2} * \frac{x}{L} * w_0[/tex]
[tex] = \frac{(w_0* x )^2}{2L} [/tex]
The shear force equation =
[tex] v(x) = \frac{(w_0* x )^2}{2L} [/tex]
For bending moment (BM):
[tex] BM = v(x) * \frac{x}{3} [/tex]
[tex] = \frac{(w_0* x )^2}{2L} * \frac{x}{3} [/tex]
[tex] = \frac{(w_0*x)^3}{6L} [/tex]
The bending moment equation =
[tex] = \frac{(w_0*x)^3}{6L} [/tex]